
LLNL-JRNL-643477

Matrix Reordering Using
Multilevel Graph Coarsening for
ILU Preconditioning

D. Osei-Kuffuor, R. Li, Y. Saad

September 5, 2013

Matrix Reordering Using Multilevel Graph Coarsening for ILU
Preconditioning

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Matrix Reordering Using Multilevel Graph Coarsening for ILU

Preconditioning

Daniel Osei-Kuffuor ∗ Ruipeng Li † Yousef Saad†

November 12, 2014

Abstract

Incomplete LU factorization (ILU) techniques are a well-known class of preconditioners, often used in
conjunction with Krylov accelerators for the iterative solution of linear systems of equations. However,
for certain problems, ILU factorizations can yield factors that are unstable, and in some cases quite
dense. Reordering techniques based on permuting the matrix prior to performing the factorization have
been shown to improve the quality of the factorization, and the resulting preconditioner. In this paper,
we examine the effect of reordering techniques based on multilevel graph coarsening ideas on one-level
ILU factorizations, such as the level-based ILU(k) or the dual threshold ILUT algorithms. We consider
an aggregation-based coarsening idea that implements two main coarsening frameworks - a top-down
approach, and a bottom-up approach - each utilizing one of two different strategies to select the next-
level coarse graph. Numerical results are presented to support our findings.

1 Introduction

Iterative methods based on Incomplete LU (ILU) preconditioners can be quite effective for solving certain
types of linear systems of equations. Early work on the use of incomplete factorizations for preconditioning
[3, 22, 32, 55, 75] led to the development of the level-based ILU(k) (or incomplete Cholesky, IC(k), for the
symmetric case), see, e.g., [50,64,76]. Here, the underlying concept was founded on properties of M -matrices,
and this generally resulted in poorer performance of ILU(k) preconditioners for general sparse systems. More
robust alternatives, such as the threshold-based ILUT factorization, were later developed for general sparse
matrices [51,62].

However, for poorly structured matrices, ILU factorizations could generate significant fill-in, making the
resulting L and U factors dense and hence inefficient as preconditioners. Reordering techniques borrowed
from direct solution methods, such as the Reverse Cuthill-McKee (RCM) ordering [36], the minimum degree
(MD) ordering [2, 37, 59, 70], and the nested dissection ordering [30, 35], have been used to help alleviate
this problem, see for instance [8, 19, 29]. The paper [8], advocates the use of RCM along with ILU(1) and
ILUT, especially for matrices that are far from being symmetric and diagonally dominant. Bridson et al. [19]
provide an analysis and explain in particular why the RCM ordering can perform well while the MD ordering
usually performs poorly for IC(0). Standard ILU factorizations are also prone to instability. First, there
is the occurrence of very small pivots during the factorization, which can lead to a poor approximation to
the original matrix. Column (or row) pivoting techniques have been typically employed to alleviate this
[7,31,56,64]. Some techniques permute the columns (or rows) of the sparse matrix during the factorization,
so that columns (or rows) that are likely to yield unstable pivots are moved to the end.

A different type of instability is related to the fact that the L and U factors are themselves unstable, i.e.,
solving linear systems with them, will lead to unstable recurrences that grow exponentially. Such cases are

∗Center for Applied Scientific Computing, L-561, Lawrence Livermore National Laboratory, Livermore, CA 94551. email:
oseikuffuor1@llnl.gov. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract No. DE-AC52-07NA27344.
†Department of Computer Science and Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis, MN 55455.

email: {rli,saad}@cs.umn.edu. Work supported by NSF under grant NSF/DMS-1216366 and by the Minnesota Supercomputer
Institute

1

characterized by very large norms ‖L−1‖ and ‖U−1‖, see, e.g., [21,33]. Several techniques, such as modified
ILU methods, see for instance [23, 28, 38, 45, 53, 72], shifted ILU methods, see for instance [48, 49, 57], as
well as rigorous dropping strategies for ILUT, see [9], have been proposed in the literature to address this
problem.

In recent years, there has been some interest in combining ILU factorizations with multilevel methods
to obtain more efficient preconditioners for general sparse linear systems. One such example is the use of
ILU(k), in particular ILU(0), as a smoother for the multigrid method [71]. In [9] and [10], Bollhöfer and
co-workers used the idea of column pivoting, in combination with rigorous dropping strategies, to construct
a multilevel preconditioner based on the Crout version of ILUT. One of the main ideas of multilevel methods
is to define an ordering of the nodes in the adjacency graph of the matrix, by splitting the nodes into coarse
and fine sets. This so-called C/F splitting is typically performed to promote independence among the nodes
in the fine set. This allows for an efficient formation of an accurate approximation to the Schur complement
matrix for the next level of the multilevel scheme. Furthermore, the nodes in the independent set can
be eliminated simultaneously, which is beneficial for parallel computing. Independent set orderings [63],
and generalized block-independent set orderings [66] have been exploited to develop multi-elimination ILU
preconditioners with the goal of promoting parallelism. In [11], Ploeg, Botta and Wubs use a grid dependent
reordering scheme to construct an effective multilevel ILU method for elliptic PDEs. Later on in [12], Botta
and Wubs generalize this further and define an ordering that selects a nearly independent set of nodes
that are diagonally dominant, and from which an independent fine set is extracted. This helps to promote
stability in the factorization, while reducing the cost in the formation of the approximate Schur complement
matrix for the next level. In [26], Chow and Vassilevski use the strength-of-connection idea from multigrid
to define the C/F splitting of the nodes. Unlike some other procedures based on attaining a diagonally
dominant fine set, this approach tries to ensure that the coarse set provides a good interpolation for the
original problem. Non-symmetric C/F nodes partitioning approaches based on diagonal dominance ratio and
sparsity combine multilevel graph coarsening strategies with standard threshold-based ILU factorizations to
yield robust multilevel preconditioners for general sparse linear systems, see for example [46,47,65].

The goal of this paper is not to propose a new type of (multilevel) ILU techniques. Instead, the focus is to
combine algebraic strategies with graph algorithms as a reordering tool to improve the stability of factored
or ILU-type preconditioners. Thus, the work described in this paper may be more along the lines of earlier
work presented in [18,27], where ideas from graph theory are used to develop reordering techniques for ILU
and factored approximate inverse preconditioners. In [18], a minimum inverse penalty (MIP) algorithm is
developed by exploiting strategies to minimize the cost of the factorization and improve the accuracy of
the factorization. The authors also present a weighted nested dissection strategy, and show its effectiveness
on anisotropic problems. In [27] a minimum discarded fill (MDF) algorithm is presented as a reordering
technique for ILU. The results show superior performance over traditional reordering strategies such as
RCM, for unstructured grid problems. However, the cost of this reordering is generally higher than that
of traditional methods. For both of these papers, the underlying observation is that for problems with
anisotropy and inhomogeneity, reordering strategies that exploit the algebraic properties of the coefficient
matrix are generally more effective than traditional methods.

In this paper, multilevel graph coarsening strategies are exploited to define an algebraic reordering tech-
nique for ILU. This constitutes one of the main differences between the work presented in this paper and
previous work. It is worth noting that in [52,54] the authors also make use of a reordering based on a multi-
level graph coarsening strategy to develop an aggregation-based algebraic multigrid technique. However, the
algebraic strategy for defining the coarsening is different. In this paper, we present two different strategies
for determining which nodes are good candidates for the coarse or fine sets. We apply this reordering to the
matrix prior to building its ILUT factorization. A multilevel dropping strategy is adopted, to be consistent
with the level structure of the reordered system, and we show that the strategies described in this paper are
also feasible with the level-based ILU factorization. In more formal terms, this paper seeks to answer the
following question: Is it possible to use ideas from multilevel graph coarsening to improve the quality of the
ILU factorization? In other words, we wish to incorporate multilevel coarsening ideas within a (single level)
ILU framework to derive robust and effective preconditioners.

The paper is organized as follows: In Section 2, we briefly introduce the graph coarsening idea and discuss
the multilevel framework. Section 3 presents the different strategies for performing the C/F splitting for
the multilevel algorithm, and the full multilevel graph coarsening algorithm is presented in Section 4. In

2

Section 5, we describe the final reordering and discuss its adaptation to the ILU factorization. Section 6
gives a description of the model problems used in this paper. Numerical results are presented in Section 7,
and we conclude in Section 8.

2 Graph Coarsening Strategies

Multilevel methods, such as multigrid [39, 60, 71] or Schur-based multilevel techniques [4, 6, 25, 66], rely on
graph coarsening strategies to construct the next level matrix in the multilevel process. For multigrid, this
corresponds to selecting a subset of the original or fine grid, known as the ‘coarse grid’, for which the solution
to the residual equation Ae = r, for some error e and residual r, is slow to converge, see for instance [20]. For
multilevel Schur-based methods, such as multilevel ILU, the coarsening strategy may correspond to selecting
from the adjacency graph of the original matrix, a subset of nodes that form an independent set [66], or a
subset of nodes that satisfy good diagonal dominance properties [65], or that limit growth in the inverse LU
factors of the ILU factorization [9, 10].

The general idea of coarsening is as follows. Given a graph with n vertices, we would like to find a
smaller graph, which yields a good representation of the original graph. Suppose we have an adjacency
graph G = (V,E) of some matrix A. For simplicity, we assume that G is undirected. An edge, eij represents

the binary relation (i, j) : aij 6= 0. Coarsening the graph consists of finding a ‘coarse’ approximation (V̂ , Ê)

so that |V̂ | < |V | and such that the new graph is a faithful representation of the original graph in some
sense. By recursively coarsening the original graph, we obtain a hierarchy of approximations to the original
graph. There are several techniques available for coarsening a graph. The work in this paper utilizes an
aggregation-based approach, which is described next.

2.1 Pairwise Aggregation

Aggregation-based techniques are a common strategy for coarsening, see for instance [25, 52, 54, 71, 73, 74].
The pairwise aggregation strategy seeks to simply coalesce two adjacent nodes in a graph into a single node,
based on some measure of nearness. The technique is based on edge collapsing [40], which is a well known
method in the multilevel graph partitioning literature. In this method, the collapsing edges are usually
selected using the maximal matching method. A matching of a graph G = (V,E) is a set of edges Ẽ,
Ẽ ⊆ E, such that no two edges in Ẽ have a vertex in common. A maximal matching is a matching that
cannot be augmented by additional edges to obtain another matching. There are a number of ways to find
a maximal matching for coarsening a graph. We use a simple greedy strategy similar to the heavy-edge
matching approach proposed in [41].

In algebraic terms, this greedy matching algorithm simply matches a node i, with its largest (off-diagonal)
neighbor jmax, i.e., we have |aijmax

| = maxj∈adj(i),j 6=i |aij |, where adj(i) denotes the adjacency (or nearest-
neighbor) set of node i. When selecting the largest neighboring entry, ties are broken arbitrarily. If jmax is
already matched with some node k 6= i then node i is left unmatched and considered as a singleton. Otherwise,
we match i with jmax. Once the matching is done, each pair of matched nodes are coalesced into a new coarse
node. When two nodes i, and jmax are coalesced into a new one, the new node is considered the parent of
the two nodes i and jmax, and denoted by par(i, jmax). As in standard agglomeration techniques, the parent
node is represented by one of the nodes that combine to form the parent. That is, par(i, jmax) = i or jmax.
Singletons represent themselves as parents. Figure 1 gives an illustration of a single coarsening step. Nodes
i and jmax are coalesced into node par(i, jmax) which will represent both nodes in the coarse-level graph.
Moreover, a singleton node will be simply mapped to itself.

2.2 Multilevel Coarsening Scheme

The coarsening strategy can be expanded into a multilevel framework by repeating the process described
above on the graph associated with the nodes in the coarse set. Let G` = (V`, E`) and define G0 to be the
original graph G and G1, G2, . . . , Gm be a sequence of coarse graphs such that G` is obtained by coarsening
on G`−1 for 1 ≤ ` ≤ m. Let A0 = A and A` be the adjacency matrix associated with graph G`. As previously
mentioned, G` admits a splitting into coarse nodes, C`, and fine nodes, F`, so that the matrix A` can be
reordered in one of the following ways:

3

Or

j ii

par(i)par(i,j)

aij

Figure 1: The coarsening process. Left: i and jmax are coalesced into node par(i, jmax) and the double-arrow
shows that par(i, jmax) is represented by jmax; Right: singleton i is mapped into itself.

[
AC`C`

AC`F`

AF`C`
AF`F`

]
(1)

or [
AF`F`

AF`C`

AC`F`
AC`C`

]
. (2)

We refer to the first approach as the Bottom-Up approach, since the coarse set, which is used to construct
the next-level matrix, is put in the upper-left block. In this approach, the coarse set represents nodes that
are considered “favorable” for the ILU factorization. The second approach is referred to as the Top-Down
approach in which the next-level nodes are put in the lower-right block. Here, the coarse set represents nodes
that are considered “unfavorable” for the ILU factorization. The criteria for determining which nodes are
“favorable” and which are nodes are not is discussed later in Section 3. In both schemes, the coarser-level
graph, G`+1, and the corresponding adjacency matrix, A`+1, are constructed from G` and A`. To construct
G`+1, we need to create edges, along with edge-weights, in certain ways between two coarse nodes created
during the coarsening process. To do this, we first introduce some additional notation. Referring to the left
side of Figure 1, if t = par(i, j) is a node in Gl+1 we will denote the representative node j in Gl by r(t)
(representative child) and the other node, i, by c(t) (child). This defines two mappings r(.) and c(.) from
Gl+1 to Gl. In the figure we have c(t) = i and r(t) = jmax for the case on the left and r(t) = i and c(t) = i
for the case on the right.

One way to define edges at the next level is to set two coarse nodes to be adjacent in G`+1 if their
representative children are adjacent in G`. With the notation just defined, this means that for any x, t ∈ Vl+1:

(t, x) ∈ El+1 iff (r(t), r(x)) ∈ El.

This may be considered as a one-sided approach, since a fine node c(t) in F`, does not contribute edges to
the adjacency graph of its parent. The edge-weights for the new graph, G`+1, using this approach, could be
taken directly from the edges corresponding to the coarse nodes in the finer graph G`, i.e., entries of AC`C`

.
In other words, we have A`+1 = AC`C`

. Although this way of creating edges in the new coarse graph is cheap
and easy to implement, it could lead to coarse graphs that are poor approximations of the original graph as
the coarsening scheme progresses. Since coarsening may also be seen as a way of ‘breaking’ connections in
the fine level graph, it is easy to see how this one-sided approach could lead to a graph of singletons after a
few coarsening steps. As a result, this approach is suitable only when a few levels of coarsening is sufficient
for reordering the nodes.

An alternative to this one-sided approach is to define two coarse nodes to be adjacent in G`+1 if they are
parents of adjacent nodes in G`. With the notation introduced above this means that for any x, t ∈ Vl+1:

(t, x) ∈ El+1 iff (r(t), c(t))× (r(x), c(x)) ∩ El 6= ∅.

Let P` denote a corresponding interpolation operator for the above mapping. That is, the columns of P`
contain nonzero weights in positions that correspond to nodes in the current-level graph that contribute

4

t = par(u,v)

u=c(t)

x=par(j,k)

k=r(x)

y=par(l)

l=r(y)j=c(x) v=r(t)
G

z=par(p,q)

q=c(z)p=r(z)

l+1

l

G

Figure 2: Two-sided approach for building the next-level coarsened graph

edges to the next-level coarse graph. Then A`+1 is obtained from the Galerkin projection A`+1 = PT` A`P`.
This way of defining edges in the coarse graph is quite common in multilevel graph partitioning techniques,
see for instance [41], and other aggregation-based methods, see for instance [16,54,71]. It may be considered
as a two-sided approach, since, unlike the previous approach, the fine nodes in F` do contribute edges to the
adjacency graph of their parents. Figure 2 gives an illustration of the approach. The edge-weights of the
new coarse graph are typically defined as the sum of the weights of the edges in the fine graph that connects
their children, or some weighted average of this sum, see for instance [52,54,71].

3 Preselection Techniques

The coarsening strategy described in Section 2 relies on the strength of the connections between the nodes of
the graph. Each node is compared to its largest off-diagonal neighbor (or most strongly connected neighbor)
with respect to some defined weights. Which candidate nodes are labeled ‘coarse’ and which ones are labeled
‘fine’ during the coarsening process depends on their weights, which are saved in the vector w. These weights
are chosen to capture some intrinsic features of the matrix, or its adjacency graph, at the current level. In
this paper, we focus on diagonal dominance as a criterion for defining the weights in w, since we wish to
apply some form of incomplete factorization on the resulting reordered matrix. The goal is to obtain a
reordering of the matrix such that rows (or columns) corresponding to nodes that satisfy some diagonal
dominance criterion are ordered first (in the top-left corner of Equations (1) and (2)). Next, we present two
different strategies to define w of this type.

3.1 Strong Neighbor Connection Ratio

In this approach, weights are defined based on the relative size of the diagonal entry and its corresponding
largest off-diagonal neighbor. We define the term γi as:

γi =
|aijmax |

|aii|+ |aijmax
|

with |aijmax
| = max

j ∈ adj(i),j 6=i
|aij |.

Recall that the matched pair (i, jmax) is typically coalesced together during the coarsening process. One
can think of γi as a measure of the degree of dependence of node i on node jmax. If γi is large, then node
i strongly depends on node jmax. On the other hand, if γi is small, then the dependence of node i on node
jmax is only a weak one. This notion of dependence is similar to that of ‘strength of connection’, which is
commonly used when defining coarse grid operators in algebraic multigrid, see for instance [14,20,25,60,71].
The weights, wi, are then formally defined as:

wi = γi × (1 + |adj(i)|)

The quantity (1 + |adj(i)|) represents the number of non-zero entries in row i of the adjacency matrix
(including the diagonal entry). It is used here to scale γi so that nodes with fewer non-zeros have a smaller
entry in w, and hence are more likely to be ordered first in the reordered system. This serves the goal of
exploiting structure in the reordering to reduce fill-ins during the factorization of the reordered system.

The decision as to which node from the matched pair, (i, jmax), goes into the coarse or fine set, depends
on the relative size of their weights, wi and wjmax , and on the direction of coarsening. For the bottom-up
approach (see Equation (1)), at level ` of the multilevel process, the node with a smaller weight can yield a
more favorable pivot for the subsequent incomplete factorization. Hence it will be a good candidate for the

5

coarse set, C`. Conversely, for the top-down approach (see Equation (2)), the node with a larger weight will
be a good candidate for the coarse set. If wi = wjmax , then either node is put in C` and the other in F`.

3.2 Relaxation

Another way to define the components of w for coarsening is to use relaxation sweeps in a way similar to
multigrid [15]. Relaxations are a common ingredient used in multigrid methods to damp out oscillatory errors
in the residual equation. More recently, a technique known as compatible relaxation [5,13,17,34,44] has been
used to select candidates for the coarse grid in algebraic multigrid (AMG). In this approach, relaxations are
done on the homogeneous equation A`e` = 0, where e` is initially chosen to be in the near null space of
A`. In [34], after a few relaxation sweeps, nodes that are quick to converge are put in F`. The remaining
nodes (that are slow to converge) are judged good candidates for the coarse set and put in some set U`. An
independent subset of these candidates is then selected and put in C`, and the process is repeated on the
remaining candidates, U` \ C`, until a C/F splitting of the nodes is obtained. Notice that nodes in the F`
set represent rows that are ‘good’ in terms of diagonal dominance with respect to the associated adjacency
matrix A`.

In using relaxations to form w, we follow an approach inspired by the compatible relaxation technique
described above. We define γ as the vector resulting from applying a few relaxation sweeps to solve the linear
system Aγ = 0. Following [44] and exploiting the structure of the matrix, we then define the components of
w as:

wi =
|γi|
‖γ‖∞

× (1 + |adj(i)|).

The weight vector w now contains a measure of the relative convergence of all the nodes, with respect to
the slowest converging node, which is then scaled by the number of non-zero entries in the row in order to
reduce fill-ins. For the top-down approach, if wi is small, then node i is put in F , otherwise node i is a good
candidate for the coarse set. For the bottom-up approach, however, small weights represent good candidates
for the coarse set.

Recall that relaxation schemes, such as Jacobi or Gauss-Seidel, are not guaranteed to converge if the
matrix A is not strictly or irreducibly diagonally dominant [64]. Thus, they tend to be ineffective on nu-
merically challenging problems, such as ones that are highly indefinite or ill-conditioned. For such problems,
it is possible to transform the system matrix into one that can be handled by the relaxation scheme. In
this paper, we transform the original matrix A into a new matrix LA, that represents some graph Laplacian
derived from A. Relaxation-based schemes have been successfully used on graph Laplacian matrices as a
means of defining algebraic distances between two nodes in some network graph, see for instance [24,58]. We
define the edge weights of the graph Laplacian for the matrix, A, to be based on the neighbor connection
ratio as follows:

lij = − |aij |
|ajj |+ |aii|

Here, the li,j represent the off-diagonal entries of the matrix LA. This formulation preserves symmetry
in the off-diagonal entries, and the diagonal entries of LA are then defined as:

lii =

n∑
j=1

|lij |

Note here LA will receive an empty row when aii is the only nonzero entry in row i of A from the above
definition. However, in practice these rows are actually rejected during the preselection stage.

We now have a more general approach to obtain the entries in w via relaxations, for an arbitrary matrix.
That is, instead of performing relaxations on the homogeneous equation Aγ = 0, we perform them on the
system LAγ = 0. The initial iterate, γ0, for the relaxation scheme is chosen so that odd nodes have value
+1 and even nodes have value −1.

3.3 Candidate set selection

In general, all the nodes in the current graph can be considered candidates for coarsening. However, in
practice, not all the nodes need to be considered. Nodes that have very small entries in w can be considered

6

good enough to produce stable pivots during the ILU factorization, and hence can be immediately put in the
set constituting the top-left block of the reordered system (in both the top-down and bottom-up schemes).
During the preselection phase of the coarsening scheme, a node i, is selected as a candidate and put in the
undetermined set U` for coarsening if wi is large, relative to some threshold βw̄; where w̄ is the mean weight
of w and β is some scaling tolerance. Thus, for a particular problem, changing the size of β will determine
how many nodes are used for coarsening to construct the next level coarse graph.

4 The multilevel coarsening algorithm

Next we give a complete algorithm for the multilevel coarsening strategy used to reorder the system before
performing the ILU factorization. The algorithm will describe the bottom-up approach, as the top-down
approach follows a similar framework. The algorithm only gives a high-level description of the coarsening
scheme, in order to keep it simple and more general. In what follows, let p(i) denote a node that is matched
with node i.

Algorithm 4.1. Multilevel Coarsening Algorithm

1. Do matching on G` = (V`, E`) to obtain pairs (i, p(i))
2. For ` = 0 : nlev, do:
3. Compute w and form candidate set U`, for coarsening
4. Initialize C` = V` \ U`
5. Initialize F` = ∅
6. Obtain a C/F splitting of U` to get IC and IF
7. Set C` = C`

⋃
IC

8. Set F` = F`
⋃
IF

9. Build next level graph G`+1

10. EndDo

Algorithm 4.1 performs nlev + 1 levels of coarsening, starting with the original fine graph G0. The
algorithm begins by performing a matching on the current level graph G` to obtain the pairs (i, p(i)), which
will be used to split the candidate set, U`. This matching promotes independence among the nodes in the
coarse set. Furthermore, it also dictates the structure of the resulting reordered matrix, which in turn affects
the fill-in pattern of the ILU factorization applied to the matrix. In line 3 of the algorithm, w is computed
and a candidate set, U`, is extracted for coarsening. The nodes that do not belong to U` are assigned to
the coarse set, C` (line 4), as they represent ‘good’ nodes that will be ordered first in the final reordering.
A C/F splitting of nodes in U` is done to obtain coarse nodes, IC , and fine nodes, IF , which are used to
update C` and F` (in lines 7 and 8). Finally, the next level graph is assembled using either the one-sided
approach or the two-sided approach for defining the edge weights, discussed earlier in section 2.2.

The overall quality of the coarsening scheme is determined, in part, by the strategy used to obtain the
C/F splitting in line 6. A common approach is to use a strategy that promotes independence among the
nodes in the coarse set. Another approach, common in the multilevel ILU literature, focuses on promoting
diagonal dominance among the nodes in the coarse set. The strategy followed in this paper uses the pairwise
aggregation technique to obtain a splitting so that the nodes in the coarse set are good in terms of diagonal
dominance, and are nearly independent. Algorithm 4.2 formally describes the technique used to obtain the
C/F splitting in line 6 of Algorithm 4.1.

Algorithm 4.2. Coarse step (C/F splitting) Algorithm

1. For i ∈ U`, do:
2. Set mark(i) = 0, ∀i ∈ U`
3. Set j = p(i)
4. If mark(i) == 0 and mark(j) == 0 and i 6= j, then
5. If wi ≤ wj , then
6. Set i ∈ IC and j ∈ IF
7. Else
8. Set i ∈ IF and j ∈ IC

7

9. Set mark(i) = mark(j) = 1
10. EndIf
11. EndDo
12. Assign any remaining nodes to IC

Initially, all the nodes in U` are unmarked. A pair of unmarked nodes, i and j, that are matched, are
compared to each other based on the relative size of their entries in w, and assigned to the coarse set, IC ,
or the fine set, IF . These nodes are then marked, and the process is repeated until all matched nodes in
U`, that are unmarked, have been marked and assigned to IC or IF . Finally, to complete the splitting, any
remaining nodes that are not marked are assigned to the coarse or fine set. These nodes come from two
different contributions. The first consists of nodes that are matched to themselves in the original graph
(i.e. singletons). These nodes represent diagonal entries in the associated matrix, and hence will be good
candidates for the coarse set. The other contribution comes from nodes that are matched with neighbors
that have been previously marked. Note that the matching described in section 2.1 is not one-to-one. Hence
a node, whose matched neighbor is involved in another matching, could be skipped by the check in line 4
of Algorithm 4.2. These nodes, which now behave like singletons, can be simply assigned to the coarse set
to be dealt with at the next level of coarsening. Alternatively, they may be assigned to either IC or IF
depending on the size of their entry in w, relative to that of their matched neighbor (albeit this neighbor is
already marked). In either case, the notion of independence is compromised, as the unmarked nodes may be
assigned to the same set as their matched neighbor. In the former case, independence could be recaptured
at the next level as the matched pair remain neighbors at the next level. In the latter case, we obtain a C/F
splitting that adheres more strictly to the requirement that ‘good’ nodes be assigned to the coarse set. The
result is a trade-off between the diagonal dominance and the independence of the nodes in the coarse set. In
our numerical experiments, we follow the latter case.

5 Final reordering and ILU factorization

5.1 Final reordering

Using Algorithm 4.1, after each step of coarsening we obtain a C/F splitting of the current graph G`, into
the sets C` and F`. For the bottom-up approach described above, after k steps of coarsening, we obtain
the following sequence of sets: Ck, Fk, . . . , F0. This sequence represents the final reordering of the system
matrix. Nodes in Ck will be ordered first, since they represent the ‘best’ nodes selected by the coarsening
strategy. This will be followed by nodes in Fk, then Fk−1 and so on, until F0, which contains the nodes
deemed to be ‘worst’ by the coarsening strategy. Considering each of these sets as a single level, we obtain
k + 1 levels in the final reordered matrix.

For the top-down approach, the order of the sequence is reversed, since coarsening is done on the ‘worst’
nodes. Thus, nodes in F0 represent the ‘best’ nodes and will be ordered first, and nodes in Ck will be ordered
last. Figure 3 shows an illustration of the final reordering for the different coarsening approaches.

5.2 Adaptation to ILU factorization

Once the matrix has been reordered, an incomplete LU factorization is performed. In this paper, we consider
the column-based implementation of two ILU methods: the incomplete LU factorization with level of fill
dropping (ILU(k)); and the incomplete LU factorization with dual threshold dropping (ILUT) [64]. The ILU
factorization is an approximation to the Gaussian elimination process, where small non-zero entries generated
during the factorization, are dropped by some dropping criterion. During the factorization process, new non-
zero entries known as ‘fill-ins’ may be generated at locations occupied by zero elements in the original matrix.
For the ILU(k) factorization, a ‘level-of-fill’ parameter, k, is used to control the amount of fill-ins allowed
in the L and U factors [76]. For k = 0, the ILU factorization drops all fill-in elements generated during the
factorization process. The factors, L and U , generated as a result, will have the same pattern as the lower
and upper triangular parts of A respectively. The level-of-fill concept associates each fill-in element with the
‘level’ at which it was formed. Initially, all non-zero entries of the matrix are assigned level zero. Then level
k fill-ins are generated by products of fill-in elements at levels less than k. The ILU(k) factorization results

8

Fk

F1

Ck

...

F0

(a) Bottom-up approach

Ck

Fk

...

F1

F0

(b) Top-down approach

Figure 3: Final reordering of the original matrix after k steps of coarsening using the bottom-up approach
(left) and top-down approach (right).

from keeping all fill-ins that have level k or less, and dropping any fill-in whose level is higher. For the ILUT
factorization, the strategy for dropping small terms is based on two parameters [62]. The first parameter is
a drop tolerance, τ , which is used mainly to avoid performing an elimination if the pivot is too small. The
second parameter is an integer, ρ, which controls the number of entries that are kept in the j-th columns
of L and U . Further details of the column-based implementation of the ILUT factorization can be found
in [45].

��
��
��
��

��

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

li1 li2 w

column j

not accessed

Figure 4: Column-based ILUT on reordered matrix with four levels of coarsening (bottom-up scheme).

The standard ILUT algorithm can be modified to take advantage of the reordering derived from the
coarsening strategies discussed above. One simple approach is to use dropping strategies that are local to
each level of the reordered matrix. In other words, if the coarsening strategy yields ` + 1 levels for the
reordered matrix, then the drop tolerance, τ , and the fill-level parameter, ρ, will each take the form of a
vector of length `+ 1, so that τ(0) and ρ(0) dictate the dropping rules for the factorization of the level-zero
block of columns, and so on. An illustration of the elimination process is shown in Figure 4, and a sketch of
the general structure of the algorithm is given next as Algorithm 5.1. Here, we assume that lev is a vector
of length `+ 1, containing the block size (number of columns) for each level.

Algorithm 5.1. Left-looking or JKI ordered ILUT

9

0. Set bsize = lev(0)
1. Set ` = 0
2. For j = 1 : n, do:
3. z = A1:n,j

4. If j > bsize
5. ` = `+ 1
6. bsize = bsize+ lev(`)
7. EndIf
8. For k = 1 : j − 1 and if zk 6= 0, do:
9. Apply first dropping rule to zk using τ(`)
10. If zk is not dropped, zk+1:n = zk+1:n − zk · Lk+1:n,k

11. Enddo
12. For i = j + 1, . . . , n, li,j = zi/zj (lj,j = 1)
13. Apply second dropping rule to Lj+1:n,j using τ(`) and ρ(`)
14. For i = 1, . . . , j, ui,j = zi
15. Apply second dropping rule to U1:j−1,j using τ(`) and ρ(`)
16. Enddo

In the following discussion, li,k and ui,k represent the scalar entries at the i-th row and k-th column of
the matrices L and U , respectively, A1:n,j denotes the j-th column of A, zk+1:n denotes the last n−k entries
in the vector z, Lk+1:n,k denotes the last n − k entries in the k-th column of L, U1:j−1,j denotes the first
j−1 entries in the j-th column of U , and so forth. The algorithm begins by setting the block size parameter,
bsize, to the size of the first level block. This block contains the columns (or rows) associated with the nodes
adjudged to be the ‘best’ according to the coarsening strategy. At the start of a given step j, a working
column, z, is created and set to the initial j-th column of A, aj , on which elimination operations will be
performed. The index j is then compared to bsize to determine which parameters are to be used for the
elimination. The level counter `, and bsize are then updated accordingly (lines 5 and 6). At the beginning
of the elimination process (line 9), the pivot, zk, is dropped if it is smaller relative to some scaling parameter
based on τ(`). Otherwise, operations of the form z := z− zklk are performed to eliminate entries of z from
top to bottom, until all entries strictly above the diagonal are zeroed out. Here, lk is used to denote the k-th
column of L. The pivot entries, zk, that are not dropped by the first dropping rule, will become the entries
in the j-th column of U (line 14), while the entries below the diagonal of the updated vector z, will be scaled
by the diagonal entry, and become the j-th column of L (line 12). In Lines 13 and 15, the threshold, τ(`),
is invoked again to drop small terms, then the largest ρ(`) entries in the resulting i-th columns of L and U
are kept, and the others are dropped.

By adopting a level-based dropping strategy, we have better control of how to drop small terms during
the factorization at the different levels. Like standard ILUT, from a practical standpoint, it is often better to
keep ρ(`) large and vary τ(`) to control the dropping. One simple approach is to choose τ(0) to be relatively
large for the first block, and (progressively) smaller for the subsequent blocks during the factorization. This is
justified since the first block (or first set of blocks) contains nodes that are considered to have good diagonal
dominance. Thus dropping during the factorization of the columns associated with these nodes could be
done in a more aggressive manner. At later levels, the columns are considered to be ‘poor’ in terms of
diagonal dominance, and a more accurate factorization may be needed to yield accurate and stable factors.

A similar approach may be used for the level-based ILU(k) method. During the factorization, the level-
of-fill parameter k, can be (progressively) increased at each subsequent level from the first level. Like the
ILUT method, this offers better control of how terms are dropped during the factorization.

Figure 5 shows the nonzero pattern of the 2D Laplacian matrix originating from the finite difference
discretization of the Laplace operator on a 50× 50 rectangular grid, with homogeneous Dirichlet boundary
conditions. To illustrate the effect of the reordering strategy, Figure 6 shows the nonzero pattern of the same
matrix reordered by the top-down version of the multilevel graph coarsening scheme. The figure depicts an
example of the pattern of the reordered matrix, and the corresponding pattern of (L+U) from the resulting
ILUT factorization, after 3, 4, and 5 levels of coarsening. For each of the reordered matrices, the number of
non-zeros in (L+ U) is approximately 2.5 times the number of non-zeros of the original matrix.

10

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

nz = 12300

Figure 5: Nonzero pattern of the 2D Laplacian matrix.

5.3 Local reordering within the blocks

Given the level structure of the multilevel graph coarsening approach, a natural extension is the possibility of
imposing some reordering within the block structure. For example, one could utilize a fill reducing technique
such as RCM within each or some of the blocks in the multilevel hierarchy. This can help to further reduce
fill-ins introduced during the ILU factorization, particularly when a high fill level is required for convergence.
A typical scenario is when the candidate set selection phase (line 2 of Algorithm 4.1) selects only a small
subset of nodes on which the coarsening is done. The resulting top-left block of the reordered matrix can be
quite large and ordered in a way that is similar to that of the original matrix. Thus, reordering the nodes
corresponding to this block by a fill reducing strategy like RCM can lead to a reduction in the amount of
fill-ins that are discarded, and potentially yield a more accurate ILU factorization. Note that in general, at
each level, the coarsening strategy produces a C/F splitting of roughly equal sizes. However, when the next
coarse level graph is relatively small, then performing a local reordering is no longer necessary or beneficial.
Hence it is sensible to utilize local reordering within each level when only a few levels of coarsening are
performed, i.e. when nlev in Algorithm 4.1 is small.

Incorporating local reordering requires only a minor modification to the multilevel graph coarsening
algorithm. We insert the line

7a. Reorder F`

after Line 7 of Algorithm 4.1 to reorder the fine set at each level and the line:

9a. Reorder final coarse set Cnlev

after Line 9 of Algorithm 4.1 to reorder the final coarse set. We refer to this algorithm as the Multilevel
Coarsening Algorithm with Local Reordering or ‘Algorithm 4.1 with reordering.’

6 Test Problems

We present some numerical results using the new reordering strategy on various application problems. These
problems are either indefinite, or exhibit numerical anisotropy that is derived from either the discretization
grid or the equation coefficients. Details of the model problems are given next.

6.1 Problem I: 2D Helmholtz equation application

The Helmholtz equation is a partial differential equation of the form

(∆ + ω2)u = f, (3)

11

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

nz = 12300

(a) Two levels of coarsening

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

nz = 30700

(b) Pattern of (L + U)

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

nz = 12300

(c) Three levels of coarsening

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

nz = 31118

(d) Pattern of (L + U)

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

nz = 12300

(e) Four levels of coarsening

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

nz = 31422

(f) Pattern of (L + U)

Figure 6: An example of the nonzero pattern of the reordered matrix and the resulting ILUT factorization
for the 2D Laplacian.

12

which describes the propagation of waves in media. In the above equation, f represents a harmonic source,
and ω represents the wavenumber. The numerical solution to the Helmholtz equation at high wave numbers
has been the subject of extensive research. At high wave numbers, the system matrix tends to be very
indefinite, causing problems for many numerical methods. Our application problem is based on the simulation
of the diffraction of an acoustic wave originating from infinity through an open medium, and incident on a
bounded obstacle with a circular boundary. Here, we assume the plane wave is propagating along the x-axis,
and the radius of the bounded obstacle is 0.5m. For a suitable numerical solution to the problem by the finite
element method, an artificial boundary condition is imposed at a distance 1.5m from the obstacle, using the
Dirichlet-to-Neumann technique to satisfy the Sommerfeld radiation condition [43]. The resulting boundary
value problem is discretized by the Galerkin least-squares finite-element method, using an isoparametric
discretization over quadrilateral elements. The discretized problem is complex symmetric indefinite, and has
size n = 57, 960, with nnz = 516, 600 nonzero elements.

In our numerical results, we use the ILUT factorization to construct the preconditioner for the numerical
solution of the Helmholtz problem. We solve the linear system for increasing values of the wavenumber ω.
As the wavenumber increases, the problem becomes more indefinite, which makes it challenging to solve by
standard ILUT. Furthermore, since we consider a fixed grid, increasing the wavenumber makes the overall
mesh resolution (measured in number of points per wavelength, ppw) decreasing as we increase ω (from the
highest of 80 ppw for ω = 4π to a low of 10 ppw for ω = 32π), leading to more challenging problems. As
shown in previous work, see for instance [43,45,57], standard ILUT applied to this problem fails to converge
at high wavenumbers. In such cases, a shifted ILUT factorization may be more appropriate. In the following
numerical examples, we use the shifted ILUT method based on the τ -based scheme (i.e. shifting based on
the drop tolerance) described earlier in the literature [57].

6.2 Problem II: Stretched circle problem

The model problem is a triangular finite element discretization of a 2D isotropic diffusion problem, defined
on the unit circle. We consider two examples of sizes n = 13, 373 and n = 53, 069, corresponding to the
mesh resolutions h = 0.02 and h = 0.01 respectively. For each of these meshes, the y−coordinates of the
vertices of the resulting triangulation is stretched by a factor of 100, yielding a symmetric positive definite
coefficient matrix that has strong unstructured anisotropic behavior. See [69] for more details of the problem
description.

6.3 Problem III: Unstructured triangles problem

We consider a finite element discretization of

0.01
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= f. (4)

The problem is initially discretized on a mesh obtained from the mesh generation package NETGEN [67,68].
This mesh contains 474 unstructured tetrahedral elements and 145 vertices, on the unit cube. As a result,
the coefficient matrix exhibits a non-grid-aligned anisotropic behavior. For our numerical experiments, the
initial mesh is uniformly refined 4 times, using the finite element package MFEM [1], so that the resulting
coefficient matrix has size n = 337, 105.

6.4 Problem IV: Rotated anisotropy problem

Finally, we consider a 2D rotated anisotropic diffusion problem described earlier in the literature, see Equation
1 of [69]. The problem satisfies a biquadratic finite element discretization of

−(c2 + εs2)
∂2u

∂x2
− 2(1− ε)cs ∂

2u

∂x∂y
− (εc2 + s2)

∂2u

∂y2
= f, (5)

where ε = 0.001, and c and s represent the cosine and sine of the angle of rotation, θ, respectively. For this
model problem, we consider two examples, each of size n = 261, 121, and corresponding to θ = π/16 and
θ = 2π/16.

13

7 Numerical Results

The experiments were conducted sequentially on a single core of a 64-bit Linux cluster, with sixteen 2.60GHz
Intel Xeon processor cores per node, and 20MB cache and 32GB memory per node. The code was compiled
by the gcc compiler using -O3 optimization level. In the following experimental results, we test the effect
of reordering by the multilevel graph coarsening strategy (MLGC) described above, and compare its perfor-
mance against those of the natural (or original) ordering obtained from the discretization, as well as standard
reordering techniques for ILU. In particular, we compare results against those of the reverse Cuthill-McKee
algorithm (RCM), the multiple minimum degree algorithm (MMD), and the nested dissection algorithm
(ND). We use the version of these algorithms as implemented in METIS [42].

The numerical solution for each example uses a right-preconditioned restarted GMRES [61] accelerator,
with a restart dimension of 100. We note that this choice of the Krylov subspace dimension is rather
liberal and a more conservative choice may be used in many of the test problems presented, leading to a
more memory efficient solution strategy. However, we found that for some examples, using a smaller Krylov
subspace dimension fails to produce converged results within the allowed number of iterations for some of the
reordering schemes used in our comparisons with the MLGC scheme. Therefore, we fix the restart dimension
to 100 in order to benefit presentation of sufficient comparative results. The maximum number of GMRES
iterations is fixed at 300, and unless otherwise stated, we assume convergence when the `2-norm of the initial
residual is reduced by a relative factor of 108. The right-hand side vector is artificially generated by assuming
a solution of all ones, and we use a zero initial guess for the iterative solver. As discussed at the end of
Section 5.2, the parameters which control the droppings in the ILU factorizations can be set in a progressive
manner over the levels of the coarsening. Specifically, for the ILUT method, we use τ(i) = 0.8τ(i − 1),
for levels i > 0. For the ILU(k) method, unless otherwise specified, we set the level-of-fill parameter k at
some level i of the multilevel heirarchy, to k = ko + 1, where ko is the value of the level-of-fill parameter
at level i − 1 of the multilevel structure. In practice, we find that it is ideal to set the tolerance used to
define the threshold for the candidate set selection to be O(τ), where τ = τ(0) is the initial drop tolerance
parameter for ILUT. Therefore, we choose β = τ when the ILUT method is used, otherwise (for ILU(k)) β
is chosen so that the resulting fill factor (or memory used) for the preconditioner is similar to that of RCM.
Furthermore, to simplify the presentation of results, we use the one-sided approach to build the coarse level
graph whenever only one level of coarsening is performed. Otherwise, the two-sided approach is used instead.

7.1 Comparison of MLGC variants

In this section, we compare the different variants of the MLGC algorithm on the different application problems
using different options for the preconditioner.

7.1.1 Helmholtz application problem

We begin with a comparison of the performance of the MLGC algorithm on the Helmholtz problem with
variable wavenumbers, using shifted ILUT as the preconditioner. For this example, we do two levels of
coarsening for each test case and we vary τ (and β) for each value of the wavenumber. Each value of τ
corresponding to a particular wavenumber, is the same across the different test cases. We use τ = 0.002,
0.003, 0.006, and 0.02, respectively for the Helmholtz problem with wavenumbers ω = 4π, 8π, 16π and 32π.
In the results that follow, we use the 2-sided approach to build the coarse level graph.

Figure 7 shows results for the algorithm using the strong neighbor connection ratio (MLGC-SNCR)
approach for coarsening. Here, and in all other figures of this type, each bar represents a test problem;
the height of each bar represents the number of iterations taken to solve the problem; and the number on
top of each bar represents the corresponding fill factor for the preconditioner. This is defined as (nnz(L +
U))/nnz(A), which is the ratio of the number of nonzero elements needed to store the L and U factors over
the original number of nonzero entries of A. Figure 7a shows the results using the top-down approach, with
and without local reordering; and Figure 7b shows the corresponding results for the bottom-up approach.
The results indicate that the top-down approach has only a marginal benefit in terms of memory cost and
number of iterations when local reordering is performed. In contrast, the bottom-up approach shows more
significant performance gains when local reordering is performed.

14

0

50

100

150

Wavenumber

Ite
ra

tio
ns

3.
49

3.
43

3.
48 3.
42

3.
32

3.
27

3.
16

3.
04

4π 8π 16π 32π

No local reordering
Local reordering

(a) top-down ordering

0

50

100

150

Wavenumber

Ite
ra

tio
ns

4.
08

3.
16

4.
14

3.
25 4

3.
28

3.
16

2.
62

4π 8π 16π 32π

No local reordering
Local reordering

(b) bottom-up ordering

Figure 7: Shifted ILUT using the top-down and bottom-up variants of the MLGC-SNCR algorithm, with
2 levels of coarsening and β = τ = {0.002, 0.003, 0.006, 0.02}, with and without local reordering, on the
Helmholtz problem. The numbers at the top of each bar show the fill factors.

0

50

100

150

Wavenumber

Ite
ra

tio
ns

3.
56

3.
51

3.
54

3.
49

3.
39

3.
37

3.
17

3.
25

4π 8π 16π 32π

No local reordering
Local reordering

(a) top-down ordering

0

50

100

150

Wavenumber

Ite
ra

tio
ns

4.
13

3.
3

4.
17

3.
31 4.

02

3.
29

3.
36 2.
74

4π 8π 16π 32π

No local reordering
Local reordering

(b) bottom-up ordering

Figure 8: Shifted ILUT using the top-down and bottom-up variants of the MLGC-Relax algorithm, with
2 levels of coarsening and β = τ = {0.002, 0.003, 0.006, 0.02}, with and without local reordering, on the
Helmholtz problem. The numbers at the top of each bar show the fill factors.

Figure 8 shows results for the MLGC algorithm using relaxations for defining the coarsening strategy
(MLGC-Relax). The observed results are quite similar to that of the MLGC-SNCR algorithm. The top-
down approach shows almost no effect from local reordering, whereas the bottom-up approach benefits in
terms of both performance and memory cost. The convergence performance of both the MLGC-SNCR and
MLGC-Relax algorithms is similar. However, the MLGC-Relax approach appears to have a slightly higher
memory cost for these examples.

7.1.2 Anisotropic examples

Next, we show the performance of the MLGC algorithm on some anisotropic examples using both ILUT and
ILU(k) for preconditioning. The test problems considered are Problem II with a mesh size of 0.02, Problem
III, and Problem IV with a rotation of 2π/16.

15

II III IV
0

10

20

30

40

50

60

70

80

Problem

Ite
ra

tio
ns

3.
69

4.
05

3.
84

2.
85

3.
81

2.
49

No local reordering
Local reordering

(a) top-down ordering

II III IV
0

10

20

30

40

50

60

70

80

Problem

Ite
ra

tio
ns

3.
9

2.
46

3.
99

2.
58

3.
82

3.
15

No local reordering
Local reordering

(b) bottom-up ordering

Figure 9: ILUT using the top-down and bottom-up variants of the MLGC-SNCR algorithm, with 2 levels of
coarsening and β = τ = {0.005, 0.02, 0.005}, with and without local reordering, on the anisotropic problems.

II III IV
0

10

20

30

40

50

60

70

80

Problem

Ite
ra

tio
ns

3.
75

3.
9

3.
57

3.
04

4.
03

3.
35

No local reordering
Local reordering

(a) top-down ordering

II III IV
0

10

20

30

40

50

60

70

80

Problem

Ite
ra

tio
ns

3.
9 3.
07

3.
67

2.
94

4.
05

3.
23

No local reordering
Local reordering

(b) bottom-up ordering

Figure 10: ILUT using the top-down and bottom-up variants of the MLGC-Relax algorithm, with 2 levels of
coarsening and β = τ = {0.005, 0.02, 0.005}, with and without local reordering, on the anisotropic problems.

For the tests involving ILUT, we do two steps of coarsening and for each problem, we choose τ to avoid
large fill factors as follows: τ = 0.005 for Problems II and IV, and τ = 0.02 for Problem III. Figures 9
and 10 show the results for ILUT using the MLGC-SNCR and MLGC-Relax algorithms respectively. For
the MLGC-SNCR algorithm, the results indicate that the bottom-up ordering scheme benefits from local
reordering for all the test problems. However, the top-down approach only shows improved performance
with local reodering for Problem III and Problem IV; Problem II appears to perform better without local
reordering. Similar results are observed when the MLGC-Relax algorithm is used. The results also indicate
that with the exception of a few cases, the MLGC-Relax algorithm generally has a higher memory cost
compared to the MLGC-SNCR algorithm.

For the tests using ILU(k), we use a variable level-of-fill value that is chosen progressively over the levels
of coarsening in the MLGC algorithm. In order to keep the resulting fill-factor similar to that attained for

16

II III IV
0

50

100

150

Problem

Ite
ra

tio
ns

3.
9

2.
96

3.
37

2.
04

4.
52

2.
88

No local reordering
Local reordering

(a) MLGC-SNCR

II III IV
0

50

100

150

Problem

Ite
ra

tio
ns

4.
05

3.
48

2.
71

2.
17

4.
89

3.
91

No local reordering
Local reordering

(b) MLGC-Relax

Figure 11: ILU(k) with variable k, using the MLGC-SNCR and MLGC-Relax algorithms, with 1 level of
coarsening and β = τ = {0.005, 0.02, 0.005}, with and without local reordering, on the anisotropic problems.
Problem II begins with ILU(3) and the remaining problems begin with ILU(1).

the tests with ILUT, we do one level of coarsening. For the test involving Problem II, we set the minimum fill
level parameter for the ILU(k) factorization to be k = 3 for the first set of rows in the multilevel hierarchy,
and k = 4 for the subsequent rows. For Problems III and IV, we set k = 1 for the first set of rows, and
k = 2 for the subsequent rows. Since we perform only one level of coarsening, the bottom-up and top-
down approaches yield identical results. Thus, we show only one result each from using the MLGC-SNCR
algorithm and the MLGC-Relax algorithm. For consistency, we use the same values of β used for the cases
with ILUT. Figure 11 shows the results. For both the MLGC-SNCR and MLGC-Relax algorithms, the
results indicate significant gains in memory usage (over over ≈ 25% for the MLGC-SNCR case) when local
reordering is performed. The results also indicate better convergence in terms of iteration count for most
of the test cases. The only exception is Problem IV, where the MLGC-SNCR algorithm converges in fewer
iterations when no local reordering is performed, although at a much higher memory cost.

The above results show the effectiveness of the different variants of the MLGC algorithm on problems
with indefinite coefficient matrices and anisotropic coefficient matrices. In general, the results indicate
similar performance for both the MLGC-SNCR and the MLGC-Relax methods. However, the MLGC-Relax
method typically yields a slightly more expensive preconditioner. The results also suggest that performing
some local reordering in the multilevel hierarchy can help to improve the quality of the subsequent ILU
factorization, and lead to a more effective preconditioner. We note, however, that how much a problem
benefits from local reordering depends on several factors such as the type of local reodering utilized, the
coarsening strategy used, and the size of the local blocks. In the next sections, we present some results
comparing the performance of the MLGC algorithm to that of standard ordering techniques.

7.2 Helmholtz equation application

In the results that follow, we compare the performance of shifted ILUT with the natural ordering, and
shifted ILUT with RCM, ND, MMD, and the MLGC orderings to solve the linear system originating from
the Helmholtz application problem, for different wavenumbers. Here, we use the MLGC-SNCR algorithm
since it gave similar results to the MLGC-Relax variant (see Figures 7 and 8). The MLGC strategy uses the
top-down direction of coarsening, with 3 steps of coarsening, and the two-sided approach for computing the
weights for the coarse level graph. To allow for a fair comparison, the drop tolerance for ILUT is adjusted
so that the memory usage is kept at ≈ 3.5 for each preconditioner. As a result, β, used for the candidate set
selection is set to β = τ = 0.002, 0.003, 0.0055, and 0.016, respectively for the problem with wavenumbers
ω = 4π, 8π, 16π, and 32π. Table 1 shows the total number of iterations and the total time taken to construct
the preconditioner and solve the linear system. The table also shows the error in the numerical solution, for

17

Ordering k No. iters Fill factor Total time Error

Natural

4π 157 3.49 3.14 7.4× 10−5

8π 170 3.47 3.39 4.4× 10−5

16π 191 3.51 3.90 2.7× 10−5

32π 123 3.51 2.63 8.3× 10−5

RCM

4π 166 3.48 3.33 8.8× 10−5

8π 195 3.51 4.07 4.3× 10−5

16π 114 3.49 2.53 3.0× 10−5

32π 95 3.45 2.30 6.7× 10−5

ND

4π 163 3.50 3.69 5.5× 10−5

8π 145 3.48 3.40 3.0× 10−5

16π 115 3.50 2.77 3.1× 10−5

32π 138 3.49 3.11 7.8× 10−5

MMD

4π 162 3.49 3.54 5.9× 10−5

8π 143 3.47 3.16 3.6× 10−5

16π 114 3.48 2.75 4.1× 10−5

32π 137 3.49 3.09 5.7× 10−5

MLGC

4π 64 3.49 1.63 6.2× 10−5

8π 40 3.48 1.15 3.1× 10−5

16π 33 3.48 1.08 2.7× 10−5

32π 53 3.49 1.57 8.3× 10−5

Table 1: Shifted ILUT with different reorderings on the Helmholtz problem. MLGC: SNCR, top-down and
two-sided approach with β = {0.002, 0.003, 0.0055, 0.016} and 2 levels of coarsening.

each preconditioner.
The results from the table indicate that at lower values of the wavenumber, shifted ILUT with natural

ordering performs better than shifted ILUT with RCM, ND, or MMD ordering. At higher wavenumbers,
when the system is very indefinite, the RCM ordering appears to perform better than the ND, MMD, and
natural orderings. However, shifted ILUT with the MLGC ordering is by far the winner. It exhibits superior
performance over the other ordering strategies for all the different values of the wavenumber. It requires
fewer iterations to converge, and it converges in very little time compared to the rest. We note here that
the time to compute each preconditioner (including the time to perform the reordering) is similar (under 1
second) for the different methods, and hence the total time presented in the table gives a good indication of
the solution time, and correlates with the number of iterations required for convergence.

7.3 Anisotropic examples

The numerical solutions to the following problems use a restarted GMRES accelerator, coupled with the
level-based ILU preconditioner, ILU(k). Here, we assume convergence whenever the `2-norm of the initial
residual is reduced by a relative factor of 1010. The results for the MLGC strategies use 2 steps of coarsening
with the two-sided approach for constructing the coarse level graph, and with local reordering by RCM. In
order to represent both options, we use the bottom-up approach for the MLGC-SNCR algorithm and the
top-down approach for the MLGC-Relax algorithm. For the tests with MLGC-SNCR, we use a tolerance of
β = 0.2 for the candidate set selection at each level. For the MLGC-Relax approach, we perform 3 iterations
of the Jacobi relaxation method, and we set β to 0.9. This choice of β generally makes the MLGC-Relax
algorithm more selective, and results in a reordered matrix with a large block in the top-left position (AF`F`

in Equation 2), which can benefit local reordering.
In the following numerical results, we fix the fill level parameter for ILU(k) to be the same for all levels

of the MLGC algorithms. This is done to offer a fair comparison with the traditional ordering techniques.

18

Ordering
& fill level k

Fill factor
(memory usage)

Iteration
count

Precon
time

Iteration
time

Error

Natural(2) 2.68 166 0.02 0.23 1.0× 10−6

Natural(3) 3.80 130 0.04 0.21 7.04× 10−7

RCM(2) 1.77 118 0.02 0.15 6.28× 10−7

RCM(3) 2.29 87 0.02 0.12 4.16× 10−7

ND(2) 2.12 172 0.06 0.22 8.96× 10−7

ND(3) 2.59 134 0.06 0.18 6.79× 10−7

MMD(2) 2.09 175 0.05 0.22 1.0× 10−6

MMD(3) 2.53 132 0.04 0.17 5.73× 10−7

MLGC-SNCR(2) 2.04 64 0.03 0.08 2.13× 10−7

MLGC-SNCR(3) 2.48 39 0.03 0.05 1.88× 10−7

MLGC-Relax(2) 1.77 90 0.02 0.12 4.95× 10−7

MLGC-Relax(3) 2.29 68 0.03 0.09 3.38× 10−7

Table 2: Summary of results for stretched circle problem, h = 0.02. MLGC-SNCR: bottom-up, two-sided
approach with β = 0.2; MLGC-Relax: top-down, two-sided approach with β = 0.9 and 3 Jacobi iterations

7.3.1 Stretched circle problem

Table 2 gives a summary of the results for the stretched circle problem, with a mesh size of 0.02, using
ILU(k) with k = (1, 2, 3). For all the different reordering methods, increasing the fill level parameter
yields a more accurate factorization and results in better solver convergence. We observe that compared to
the natural, MMD, and ND orderings, RCM performs better in terms of the iteration count to convergence,
memory efficiency, and computational time. However, the MLGC algorithms outperform any of the standard
ordering strategies. For the same cost in memory, the MLGC-Relax algorithm cuts the number of iterations
by over 20% and time to solution by over ≈ 15%, compared to RCM. The MLGC-SNCR algorithm is slightly
more expensive in terms of memory when compared to RCM or the MLGC-Relax algorithm. However, it
has the best performance in terms of iteration count and time to solution, with an improvement of over
45% compared to RCM. The results also show that the natural ordering performs better than MMD or ND,
although the natural ordering generates more fill-ins, and thus, has a much larger fill factor.

7.3.2 Unstructured Triangles problem

Table 3 shows results for the unstructured triangle problem. For each of the reordering strategies, a fill
level parameter, k = (1, 2), is used to construct the ILU preconditioner. The results indicate that the
natural ordering yields the least effective preconditioner, while it generates significant fill-ins compared to
the other strategies. Once again, RCM outperforms ND and MMD. However, the MLGC strategies show
better convergence in terms of iteration count and solution error compared to RCM, with the MLGC-SNCR
strategy performing the best. Here, the MLGC-SNCR algorithm is also the most effective at reducing fill-
ins generated during the ILU(k) factorization. Notice, however, that the RCM method appears to have a
slightly better overall computational time. This is to be expected considering the additional cost incurred
by performing local reordering for the MLGC strategies, for a relatively modest improvement in the number
of iterations required to reach convergence.

7.3.3 Rotated anisotropy problem

Tables 4 and 5 give the results for the rotated anisotropy problem, with a rotation through an angle of π/16
and 2π/16 respectively. For these results, a fill level parameter, k = (1, 2), is used to construct the ILU
preconditioner. Once again, the results indicate that the natural ordering generates significantly more fill-ins
compared to the other strategies. Furthermore, when ILU(1) is used, the natural ordering fails for both test
cases. When ILU(2) is used instead, the natural ordering converges in the fewest number of iterations, but
at a much higher cost than the other strategies. For the π/16 problem, the performance of MLGC-SNCR
is only slightly better than that of RCM in terms of iteration count and solution error. However, RCM

19

Ordering
& fill level k

Fill factor
(memory usage)

Iteration
count

Precon
time

Iteration
time

Error

Natural(1) 4.58 80 3.76 6.40 1.22× 10−4

Natural(2) 9.08 56 12.75 6.39 1.20× 10−4

RCM(1) 2.06 67 1.48 3.30 1.47× 10−4

RCM(2) 3.69 49 3.10 2.79 1.30× 10−4

ND(1) 2.15 79 5.31 4.27 1.29× 10−4

ND(2) 3.94 56 7.75 3.55 1.21× 10−4

MMD(1) 2.21 77 2.89 5.31 1.15× 10−4

MMD(2) 3.81 55 5.31 4.29 9.50× 10−5

MLGC-SNCR(1) 2.02 64 1.69 3.45 7.75× 10−5

MLGC-SNCR(2) 3.60 45 3.46 2.76 7.64× 10−5

MLGC-Relax(1) 2.06 66 1.87 3.24 1.25× 10−4

MLGC-Relax(2) 3.67 47 3.53 2.64 9.47× 10−5

Table 3: Summary of results for unstructured triangle problem MLGC-SNCR: bottom-up, two-sided ap-
proach with β = 0.2; MLGC-Relax: top-down, two-sided approach with β = 0.9 and 3 Jacobi iterations

has a cheaper memory cost, which leads to a faster time to solution particularly for the ILU(2) case. A
similar observation can be made for the 2π/16 problem, although the difference in the iteration count to
reach convergence is increased in favor of the MLGC-SNCR algorithmm, particularly for the ILU(1) case.
For both examples, the MLGC-Relax algorithm shows worse performance compared to RCM for roughly the
same cost in memory. This could be attributed to the poor convergence of the Jacobi relaxation method
on this problem. Using the Gauss Seidel relaxation method instead, and with the same parameters, the
MLGC-Relax algorithm gives results similar to that of RCM, see Table 6. This is not surprising since the
choice of β selects the block sizes of the reordered matrix in favor of the local reordering.

7.4 Effect of variable levels of fill

In the results from the previous sections, we have used a single fill level parameter for the MLGC schemes, in
order to allow a fair comparison with traditional ordering techniques. In the following example, we consider
the benefit of using a level-of-fill parameter that varies with the levels of the MLGC scheme.

Fill-reducing strategies such as RCM are known to be effective at higher fill levels, since the resulting ILU
factorization becomes more accurate. The results in Table 2 indicate that even at low fill levels the MLGC
strategies show good convergence. This is a desirable property and we explore this further by considering
the more challenging stretched circle problem (Problem II) with a mesh size of 0.01. Due to the smaller
mesh size and the strong anisotropy, the problem is more challenging to solve, and a relatively high fill
level is needed for the iterative solver to converge. Table 7 shows the results for RCM and MLGC. The
MLGC algorithm uses the SNCR strategy with the two-sided approach, bottom-up, and β = 0.2. Here, we
consider the use of both a fixed and a variable level-of-fill parameter k, for the MLGC algorithm. In order
to differentiate between the two, we use a subscript v to identify the MLGC algorithm with a variable k
(MLGCv). We note here that solutions with ND, MMD, and the natural orderings failed to converge in
the required number of iterations, and with a reasonable fill factor. RCM(4) also failed to converge and the
convergence of RCM(5) is quite slow. In contrast, MLGC(5) converges about 5 times faster for roughly the
same cost in memory usage. In general, the MLGC algorithms show good convergence even at low values
of the fill level parameter. Comparing the MLGC strategies further shows the benefit of using a variable
k. For roughly the same iteration count, the MLGCv variant has a cheaper memory cost, compared to the
MLGC algorithm with a fixed k. Moreover, in practice, using a variable fill level parameter leads to a more
robust strategy since it provides better control over the accumulation of fill-ins at the different levels of the
multilevel structure. We note here that the MLGC algorithm with a fixed k did not converge for k less than
3 for this problem.

20

Ordering
& fill level k

Fill factor
(memory usage)

Iteration
count

Precon
time

Iteration
time

Error

Natural(1) 3.30 F 1.24 18.89 5.10× 102

Natural(2) 7.08 7 5.19 0.54 2.19× 10−8

RCM(1) 1.34 13 0.48 0.33 1.54× 10−7

RCM(2) 1.84 10 0.66 0.27 1.45× 10−7

ND(1) 1.70 43 2.78 1.50 8.58× 10−8

ND(2) 2.30 28 3.30 1.02 7.14× 10−8

MMD(1) 1.75 55 0.84 2.05 1.05× 10−7

MMD(2) 2.08 27 1.14 0.95 8.14× 10−8

MLGC-SNCR(1) 1.87 10 0.81 0.31 1.11× 10−7

MLGC-SNCR(2) 2.96 8 1.38 0.29 2.15× 10−8

MLGC-Relax(1) 1.34 41 0.82 1.28 1.78× 10−7

MLGC-Relax(2) 1.84 28 1.00 0.90 1.55× 10−7

Table 4: Summary of results for rotated anisotropic problem rotated by π/16 MLGC-SNCR: bottom-up,
two-sided approach with β = 0.2; MLGC-Relax: top-down, two-sided approach with β = 0.9 and 3 Jacobi
iterations

Ordering
& fill level k

Fill factor
(memory usage)

Iteration
count

Precon
time

Iteration
time

Error

Natural(1) 3.30 F 1.24 16.47 6.0× 102

Natural(2) 7.08 6 5.19 0.46 2.02× 10−7

RCM(1) 1.34 31 0.48 0.89 2.99× 10−7

RCM(2) 1.84 12 0.65 0.34 4.78× 10−7

ND(1) 1.70 55 2.83 2.05 2.52× 10−7

ND(2) 2.30 39 3.30 1.50 1.69× 10−7

MMD(1) 1.75 56 0.84 2.11 2.32× 10−7

MMD(2) 2.08 39 1.14 1.43 2.12× 10−7

MLGC-SNCR(1) 1.87 13 0.79 0.40 8.02× 10−8

MLGC-SNCR(2) 2.96 8 1.37 0.30 5.03× 10−8

MLGC-Relax(1) 1.35 120 0.81 4.69 4.87× 10−7

MLGC-Relax(2) 1.84 26 0.99 0.82 3.48× 10−7

Table 5: Summary of results for rotated anisotropic problem rotated by 2π/16 MLGC-SNCR: bottom-up,
two-sided approach with β = 0.2; MLGC-Relax: top-down, two-sided approach with β = 0.9 and 3 Jacobi
iterations

Problem ILU(k)
Fill

factor
Iteration

count
Precon
time

Iteration
time

Error

Problem IV, θ = π
16

ILU(1) 1.34 17 0.82 0.45 4.42× 10−8

ILU(2) 1.84 13 0.96 0.37 4.25× 10−8

Problem IV, θ = 2π
16

ILU(1) 1.34 34 0.80 0.99 1.87× 10−7

ILU(2) 1.84 14 1.00 0.40 1.20× 10−7

Table 6: MLGC-relax on Problem IV, θ = π
16 and θ = 2π

16 , using the top-down, two-sided approach with
β = 0.9 and 3 Gauss Seidel iterations

8 Summary and Conclusion

8.1 Summary

The numerical results presented above show an improvement in performance when the MLGC strategy is
used, compared to the natural and other standard reordering strategies. One explanation for this comes

21

Ordering
& fill level k

Fill factor
(memory usage)

Iteration
count

Total
time

Error

RCM(4) 2.89 F 2.32 1.31× 102

RCM(5) 3.49 277 2.22 2.62× 10−5

MLGC(3) 2.52 141 1.11 8.36× 10−6

MLGC(4) 3.00 76 0.71 1.42× 10−6

MLGC(5) 3.50 57 0.79 1.88× 10−6

MLGCv(2) 2.89 79 0.72 1.83× 10−6

MLGCv(3) 3.39 59 0.59 9.64× 10−7

Table 7: Summary of results for MLGC and RCM for different levels of fill on the stretched circle problem,
h = 0.01. RCM(k) (resp. MLGC(k)) denotes an ILU(k) factorization is performed on the RCM (resp.
MLGC) reordered system matrix. The MLGC algorithm using a variable fill level parameter is denoted
MLGCv. The MLGC algorithm uses MLGC-SNCR: bottom-up, two-sided approach and β = 0.2

from considering the effect of the MLGC scheme on the stability and accuracy of the ILU factorization.
First, recall that the coarsening strategy compares a node to its largest neighbor (based on some weight),
and assigns one to the coarse set and the other to the fine set. As a result, long recurrences during the
preconditioner solve (i.e. forward solve with L and backward solve with U) involving large (neighboring)
entries in L and U are potentially avoided. In other words, the norm of L−1 or U−1 is not too large, leading
to more stable triangular solves. A theoretical basis of this result for the symmetric positive definite case
is presented in [18]. Furthermore, the splitting of nodes into coarse or fine sets leads to a hierarchy of
(block) independent sets, which can be eliminated with very little fill-ins during the factorization. Thus,
few entries are dropped during the factorization, which suggests that the preconditioner obtained from the
ILU factorization with this ordering should be more accurate. Moreover, since nodes that are poor in terms
of diagonal dominance, (or nodes with unfavorable pivots), are relegated to be ordered last, the adverse
effects of these poor nodes on the factorization is minimized. The result is that, large entries in L or U ,
which could lead to unstable and inaccurate factors, are avoided. We note here that for the indefinite cases,
such as the Helmholtz problem at high wavenumbers, the use of diagonal compensation or modification
strategies play a major role in bounding the norm of L−1 or U−1, leading to stable triangular solves (see
for instance [45, 48, 57]). In such cases, reordering may help to improve performance as shown in Table 1.
However, reordering alone may not be sufficient to solve such problems.

Unlike the MLGC scheme, the other reordering techniques (i.e. RCM, ND, and MMD) are based primarily
on the adjacency graph of the coefficient matrix A without any consideration given to algebraic values of
its entries. Thus, as indicated by the results in Table 1, when the natural ordering gives an ordering that is
good in terms of minimizing fill-ins, it may not be beneficial to reorder the system by an approach that is
based solely on its graph.

8.2 Conclusion

The technique presented in this paper exploits a multilevel graph coarsening strategy to define an effective
reordering for ILU-based preconditioners. The direction of coarsening for the multilevel method follows either
a top-down or bottom-up approach, and two different strategies are presented for defining the splitting of
nodes into coarse and fine sets. The first strategy considers the strength of connection between neighboring
nodes, and the second is based on the use of relaxation techniques from algebraic multigrid. With the help
of examples from the solution of the Helmholtz equation, and anisotropic problems from 2D/3D PDEs, we
compared the results obtained with the proposed technique against those obtained from the natural ordering,
as well as other standard reordering techniques, namely RCM, MMD and ND.

For the Helmholtz problem, the results indicate that the multilevel graph coarsening reordering strategy
is superior to the natural ordering, or the ordering given by RCM, ND, or MMD. When used in combination
with shifted ILUT, significant gains are observed in the number of iterations required to reach convergence,
and in the overall computational time, even for the highly indefinite cases. At high wavenumbers, reordering
alone is not enough to efficiently solve the Helmholtz problem and robust algebraic strategies such as diagonal

22

compensation (Shifted ILU) or modified ILU are necessary to ensure good convergence.
The results from the anisotropic examples also indicate significant performance gains over the natural

ordering. In general, comparative results show that the MLGC approach either outperformed the standard
reordering strategies or gave results comparable to RCM, which in this case was the best of the standard
reordering schemes.

Our results also indicate that performing some local reordering within the blocks of the MLGC scheme
can be beneficial. In practice, any reordering strategy may be utilized to reorder the local blocks. In this
work, we used RCM to perform local reordering for the anisotropic examples, in order to benefit from its
fill-reducing property. Depending on the tolerance used in the preselection phase of the MLGC algorithm,
one can control the size of the local blocks, and hence, the resulting fill factor of the ILU factorization.

To summarize, we observe that when the natural ordering reduces fill-ins, it generally performs quite
well compared to the standard reordering strategies. Furthermore, reorderings based solely on graph theory
may be ineffective for highly indefinite problems, such as the Helmholtz problem at high wave numbers,
and problems with strong (unstructured) anisotropy. In such cases, combining ideas from graph theory with
algebraic information from the underlying adjacency matrix can be quite beneficial. These observations are
in agreement with previous results from the literature, see e.g., [18, 19, 27]. Due to its algebraic nature, the
MLGC strategy requires some parameter tuning, which makes it applicable to a wider range of problems but
at the expense of added complexity. Furthermore, one can easily adapt the framework to a specific problem
by defining a new C/F splitting strategy that is appropriate for that problem.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. We
wish to thank Kechroud, Gowda and Soulaimani for providing us with the finite-element code for acoustic
wave scattering (see [43]), and J. Schroder for providing us with the data for the anisotropic examples
presented in the experiments.

References

[1] MFEM: Modular parallel finite element methods library. http://mfem.googlecode.com.

[2] P. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering algorithm,
SIAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 886–905.

[3] O. Axelsson, A generalized SSOR method, BIT, 12 (1972), pp. 443–467.

[4] O. Axelsson and P. Vassilevski, Algebraic multilevel preconditioning methods. I, Numer. Math., 56
(1989), pp. 157–177.

[5] R. E. Bank, Compatible coarsening in the multigraph algorithm, Advances in Engineering Software, 38
(2007), pp. 287–294.

[6] R. E. Bank and C. Wagner, Multilevel ILU decomposition, Numerische Mathematik, 82 (1999),
pp. 543–576.

[7] M. Benzi, J. C. Haws, and M. Tuma, Preconditioning highly indefinite and nonsymmetric matrices,
Tech. Report LA-UR-99-4857, CIC-19 and Los Alamos National Laboratory, Los Alamos, NM 87545,
August 1999.

[8] M. Benzi, D. Szyld, and A. van Duin, Orderings for incomplete factorization preconditioning of
nonsymmetric problems, SIAM Journal on Scientific Computing, 20 (1999), pp. 1652–1670.

[9] M. Bollhöfer, A robust ILU with pivoting based on monitoring the growth of the inverse factors,
Linear Algebra and its Applications, 338 (2001), pp. 201–213.

23

[10] M. Bollhöfer, M. J. Grote, and O. Schenk, Algebraic multilevel preconditioner for the helmholtz
equation in heterogeneous media, SIAM Journal on Scientific Computing, 31 (2009), pp. 3781–3805.

[11] E. Botta, A. Ploeg, and F. Wubs, Nested grids ILU-decomposition (NGILU), J. Comp. Appl.
Math., 66 (1996), pp. 515–526.

[12] E. Botta and F. Wubs, Matrix Renumbering ILU: an effective algebraic multilevel ILU, SIAM Journal
on Matrix Analysis and Applications, 20 (1999), pp. 1007–1026.

[13] A. Brandt, Generally highly accurate algebraic coarsening, Electronic Transactions on Numerical Anal-
ysis, 10 (2000), pp. 1–20.

[14] A. Brandt, S. F. Mc Cormick, and J. Ruge, Algebraic multigrid (amg) for sparse matrix equations,
in Sparsity and its applications, D. J. Evans, ed., Cambridge, 1984, Cambridge Univ. Press.

[15] J. Brannick, M. Brezina, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge,
An energy-based AMG coarsening strategy, Numerical Linear Algebra with Applications, 13 (2006),
pp. 133–148.

[16] J. Brannick, Y. Chen, J. Kraus, and L. Zikatanov, Algebraic multilevel preconditioners for
the graph Laplacian based on matching in graphs, SIAM Journal on Numerical Analysis, 51 (2013),
pp. 1805–1827.

[17] J. Brannick and R. Falgout, Compatible relaxation and coarsening in algebraic multigrid, SIAM
Journal on Scientific Computing, 32 (2010), pp. 1393–1416.

[18] R. Bridson and W.-P. Tang, Ordering, anisotropy, and factored approximate inverses, SIAM Journal
on Scientific Computing, 21 (1999), p. 867882.

[19] , A structural diagnosis of some ic orderings, SIAM Journal on Scientific Computing, 22 (2000),
p. 15271532.

[20] W. L. Briggs, V. E. Henson, and S. F. Mc Cormick, A multigrid tutorial, SIAM, Philadelphia,
PA, 2000. Second edition.

[21] A. M. Bruaset, A. Tveito, and R. Winther, On the stability of relaxed incomplete LU factoriza-
tions, Mathematics of Computation, 54 (1990), pp. 701–719.

[22] N. Buleev, A numerical method for the solution of two-dimensional and three-dimensional equations
of diffusion, Math. Sb., 51 (1960), pp. 227–238.

[23] T. Chan and H. Elman, Fourier analysis of iterative methods for elliptic problems, SIAM Review, 31
(1989), pp. 20–49.

[24] J. Chen and I. Safro, Algebraic distance on graphs, SIAM Journal on Scientific Computing, 33 (2011),
pp. 3468–3490.

[25] K. Chen, Matrix Preconditioning Techniques and Applications, Cambridge University Press, Cam-
bridge, UK,, 2005.

[26] E. Chow and P. S. Vassilevski, Multilevel block factorizations in generalized hierarchical bases,
Numerical Linear Algebra with Applications, 1 (2002), pp. 1–22.

[27] E. F. D‘Azevedo, P. A. Forsyth, and W.-P. Tang, Ordering methods for preconditioned con-
jugate gradient methods applied to unstructured grid problems, SIAM Journal on Matrix Analysis and
Applications, 13 (1992), p. 944961.

[28] S. Doi and A. Hoshi, Large numbered multicolor MILU preconditioning on SX-3/14, Int’l J. Computer
Math., 44 (1992), pp. 143–152.

24

[29] I. Duff and G. Meurant, The effect of ordering on preconditioned conjugate gradients, BIT Numerical
Mathematics, 29 (1989), pp. 635–657.

[30] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford University
Press, New York, 1986.

[31] I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a sparse
matrix, SIAM Journal on Numerical Analysis, 22 (2001), pp. 973–996.

[32] T. Dupont, R. Kendall, and H. Rachford, An approximate factorization procedure for solving
self-adjoint elliptic difference equations, SIAM J. Numer. Anal., 5 (1968), pp. 559–573.

[33] H. C. Elman, A stability analysis of incomplete LU factorizations, Mathematics of Computation, 47
(1986), pp. 191–217.

[34] R. Falgout and P. Vassilevski, On generalizing the AMG framework, SIAM Journal on Numerical
Analysis, 42 (2005), pp. 1669–1693.

[35] A. George, Nested dissection of a regular finite element mesh, SIAM Journal on Numerical Analysis,
10 (1973), pp. 345–363.

[36] A. George and J. Liu, Computer solution of large sparse positive definite systems, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[37] , Evolution of the minimum degree ordering algorithm, SIAM review, 31 (1989), pp. 1–19.

[38] I. Gustafsson, A class of first order factorization methods, BIT, 18 (1978), pp. 142–156.

[39] W. Hackbusch, Multi-Grid Methods and Applications, vol. 4 of Springer Series in Computational
Mathematics, Springer-Verlag, Berlin, 1985.

[40] Y. F. Hu and R. J. Blake, Load balancing for unstructured mesh applications, Nova Science Pub-
lishers, Inc., Commack, NY, USA, 2001, pp. 117–148.

[41] G. Karypis and V. Kumar, Multilevel graph partitioning schemes, in Proc. 24th Intern. Conf. Par.
Proc., III, CRC Press, 1995, pp. 113–122.

[42] G. Karypis and V. Kumar, METIS: A Software Package for Partitioning Unstructured Graphs, Par-
titioning Meshes, and computing Fill-Reducing Orderings of Sparse Matrices, version 4.0.1,University
of Minnesota, Dept. of Comp. Sci. and Eng., Army HPC Research Center, Minneapolis, 1998.

[43] R. Kechroud, A. Soulaimani, Y. Saad, and S. Gowda, Preconditioning techniques for the solution
of the Helmholtz equation by the finite element method, Math. Comput. Simul., 65 (2004), pp. 303–321.

[44] O. Livne, Coarsening by compatible relaxation, Numerical Linear Algebra with Applications, 11 (2004),
pp. 205–227.

[45] S. Maclachlan, D. Osei-Kuffuor, and Y. Saad, Modification and compensation strategies for
threshold-based incomplete factorizations, sisc, 34 (2012), pp. 48–75.

[46] S. MacLachlan and Y. Saad, Greedy coarsening strategies for nonsymmetric problems, SIAM J. Sci.
Comput., 29 (2007), pp. 2115–2143.

[47] S. MacLachlan and Y. Saad, A greedy strategy for coarse-grid selection, SIAM Journal on Scientific
Computing, 29 (2007), pp. 1825–1853.

[48] M. Magolu Monga Made, R. Beauwens, and G. Warzee, Preconditioning of discrete Helmholtz
operators perturbed by a diagonal complex matrix, Comm. in Numer. Meth. in Engin., 16 (2000), pp. 801–
817.

[49] T. A. Manteuffel, Shifted incomplete Cholesky factorization, in Sparse Matrix Proceedings 1978
(Sympos. Sparse Matrix Comput., Knoxville, Tenn., 1978), SIAM, Philadelphia, Pa., 1979, pp. 41–61.

25

[50] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M-matrix, Mathematics of Computation, 31 (1977), pp. 148–162.

[51] N. Munksgaard, Solving sparse symmetric sets of linear equations by preconditioned conjugate gradient
method, ACM Transactions on Mathematical Software, 6 (1980), pp. 206–219.

[52] A. C. Muresan and Y. Notay, Analysis of aggregation-based multigrid, SIAM Journal on Scientific
Computing, 30 (2008), pp. 1082–1103.

[53] Y. Notay, DRIC: a dynamic version of the RIC method, Numer. Lin. Alg. Applic., (1994). to appear.

[54] , An aggregation-based algebraic multigrid method, Electronic Transactions on Numerical Analysis,
37 (2010), pp. 123–146.

[55] T. Oliphant, An implicit numerical method for solving two-dimensional time-dependent diffusion prob-
lems, Quart. Appl. Math., 19 (1961), pp. 221–229.

[56] M. Olschowka and A. Neumaier, A new pivoting strategy for gaussian elimination, Numerical
Linear Algebra with Applications, 240 (1996), pp. 131–151.

[57] D. Osei-Kuffuor and Y. Saad, Preconditioning Helmholtz linear systems, Applied Numerical Math-
ematics, 60 (2009), pp. 420–431.

[58] D. Ron, I. Safro, and A. Brandt, Relaxation-based coarsening and multiscale graph organization,
SIAM Multiscale Modelling and Simulations, 9 (2011), pp. 407–423.

[59] D. J. Rose, A graph-theoretic study of the numerical solution of sparse positive definite systems of
linear equations, Graph Theory and Computing, R. C. Read, ed., Academic Press, New York, (1972),
pp. 183–217.

[60] A. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods, S. McCormick, ed., vol. 3 of
Frontiers in Applied Mathematics, SIAM, 1987, ch. 4.

[61] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM Journal on Scientific and
Statistical Computing, 14 (1993), pp. 461–469.

[62] , ILUT: a dual threshold incomplete ILU factorization, Numerical Linear Algebra with Applica-
tions, 1 (1994), pp. 387–402.

[63] , ILUM: a multi-elimination ILU preconditioner for general sparse matrices, SIAM Journal on
Scientific Computing, 17 (1996), pp. 830–847.

[64] , Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, Philadelpha, PA, 2003.

[65] , Multilevel ILU with reorderings for diagonal dominance, SIAM Journal on Scientific Computing,
27 (2005), pp. 1032–1057.

[66] Y. Saad and B. Suchomel, ARMS: An algebraic recursive multilevel solver for general sparse linear
systems, Numerical Linear Algebra with Applications, 9 (2002).

[67] J. Schberl, NETGEN An advancing front 2D/3D-mesh generator based on abstract rules, Computing
and Visualization in Science, 1 (1997), pp. 41–52.

[68] J. Schöberl, J. Gerstmayr, and R. Gaisbauer, NETGEN - automatic 3d tetrahedral mesh gen-
erator. http://www.hpfem.jku.at/netgen/, 2003.

[69] J. B. Schroder, Smoothed aggregation solvers for anisotropic diffusion, Numerical Linear Algebra
with Applications, 19 (2012), pp. 296–312.

[70] W. F. Tinney and J. W. Walker, Direct solution of sparse network equations by optimally ordered
triangular factorization, Proc. IEEE, 55 (1967), pp. 1801–1809.

26

[71] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, San Diego, CA,
2001.

[72] H. van der Vorst, The convergence behaviour of preconditioned CG and CGS in the presence of
rounding errors, in Preconditioned conjugate gradient methods, O. Axelsson and L. Kolotilina, eds.,
vol. 1457, Lecture notes in Math., Springer Verlag, 1990.

[73] P. Vaněk, M. Brezina, and J. Mandel, Convergence of algebraic multigrid based on smoothed
aggregation, Numerische Mathematik, 88 (2001), pp. 559–579.

[74] P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid by smoothed aggregation for second and
fourth order elliptic problems, Computing, 56 (1996), pp. 179–196.

[75] R. Varga, Factorization and normalized iterative methods, in Boundary problems in differential equa-
tions, R. Langer, ed., Univ. of Wisconsin Press, Madison, 1960, pp. 121–142.

[76] J. W. Watts III, A conjugate gradient truncated direct method for the iterative solution of the reservoir
simulation pressure equation, Society of Petroleum Engineers Journal, 21 (1981), pp. 345–353.

27

